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Let there be given, on an unknown contour L in the plane of the complex 
variable z = x + iy, the second derivatives of a biharmonic function 
which are known functions of the coordinates x and y. It is required to 
determine the boundary L and the biharmonic function. The elasto-plastic 
problem for a body in a state of plane strain or plane stress can be re- 
duced to this mathematical formulation in the case when the plastic zone 
completely surrounds the contour of the body, because the stresses in 
the plastic region are as a rule determined directly by the boundary 
loads [d. Some problems of plate buckling and of fracture of materials 
may be reduced to an analogous mathematical problem [21. 

In the case when the given boundary functions are the corresponding 
second derivatives of a biharmonic function, the problem may be solved 

by the method of Galin c31. 

Below, a method of solution of a certain class of the indicated prob- 

lems is advanced, in which the boundary functions do not have to satisfy 

the last condition. The problem of elasto-plastic equilibrium of plates 

with a circular hole is considered in detail in the case when the con- 

tour of the cavity is subjected to a constant normal loading and the 

tangential loading is zero, while at infinity a homogeneous state of 

stress is assumed. 

1. Formulation of problems. Let an infinite elasto-plastic 

body, in a state of plane strain or plane stress, possess a cavity sub- 
jected to an arbitrary normal and tangential loading. At infinity 
stresses exist, which are polynomial functions of Cartesian coordinates 

x and y. ‘Ihe origin of the coordinates is located within &L _.=itv. 
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Ihe whole cavity is completely within the plastic zone. We assume that 

the stresses in the plastic region are determined solely by the contour 

shape of the cavity and by the boundary loading and do not depend on the 

state of stress in the elastic region. 'lhen the stress may be found from 

the solution of the equations of plasticity theory MI. We shall assume 
them to be known functions x: and y. 

In the plane problem of the theory of elasticity the components of 

the tensor of stresses u,, uY, -rXY are determined by the formulas of 

Kolosov-Muskhelishvili 141 

az+a,=2[qz)+qz)l, a,-~a,+2iz,=2[Z~‘(Z)+Y((z)] (1.1) 

Here a(z) and Y'(z) are analytical functions of z = x + iy, which be- 

have at infinity as (1.2) 

a (2) = d&n + . . . + do + 0 (z-l), Y (2) = e,zn + . . . f e, + 0 (z-l) 

We recall that the stresses ox, ay, vxY are expressed by means of 

the second derivatives of a biharmonic function V('(x, y) as: 

6x = vyar, by = vuc, z, = - v,, 

Along the unknown contour L, which separates the elastic from the 

plastic region, all the stresses are continuous. From this, by formulas 

(l.l), we obtain the following boundary value problem for the exterior 

of the contour L 

(1.3) 
0 (4 + @ (4 = f1 (& 9) on L, z w (z) + Y (z) = fa (G 9) on t 

Here fib, y) ad fp( x, y) are continuous functions, known from the 
solution of the corresponding problem of the theory of plasticity (the 

first of these is real, the second - complex). It is required to find 

the contour L and functions O(z) and 'i'(z) using the boundary conditions 

(1.2) and (1.3). 

In completely analogous fashion one formulates the interior plane 

elasto-plastic problem, when the elastic region occupies the interior 

of the contour L (thereby the requirement in condition (1.2) is, 

naturally, omitted). In the sequel, for the sake of brevity, we con- 

sider only the exterior elasto-plastic problem. 

The mathematical formulation of the boundary value problem (1.3). 

(1.2) may be also invoked in describing physical problems of a somewhat 
different type. Let it be assumed that an infinite plate with a cavity, 
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subjected to loads, is extended at infinity and, being in a state of 
plane stress, a zone of local buckling appears, which surrounds the 
whole contour of the cavity. The buckling may occur also in the case 
when the Cavity is absent, but the plate is subjected to intensive body 
forces. Let us assume that, based on certain considerations, we know 
the state of stress in the buckling zone (even within an accuracy with 
several undetermined constants). In particular, the stresses in the 
buckling zone are easily determined in the case of plates with vanish- 

ing bending rigidity [21. Then, on the unknown contour of the buckling 
zone. we obviously obtain the boundary problem (1.3). 

If the contour of the body in a state of plane strain or plane stress 

is completely surrounded by a certain region of limiting equilibrium 
(zone of fracture), such that in the region of limiting equilibrium the 
stresses may be determined by solving a corresponding statically deter- 
minate problem which does not depend on the state of stress in the re- 
maining region, then the corresponding boundary value problem coincides 
with the limiting problem (1.3). 

In solving elasto-plastic problems we shall adopt in the sequel the 

usual assumptions [51: 1) each characteristic, emanating from the con- 

tour of the body, intersects the unknown contour L at one point, 2) 
during loading the contours of separation of elastic and plastic zones 
successively contain each other. 

2. Method of solution of the boundary value problem. 
1. We pass to the parametric plane of the complex variable < with the 

aid of the transformation z = o(c). The analytic function o(j) maps con- 
formally the exterior of a unit circle of the plane 5 on the exterior 

of the unknown contour L of the plane z with the correspondence of in- 

finite points o(m) = m; it has to be determined during the process of 

solving the problem. \Ve introduce the notation 

cp (5) = Q, [O (c)l, 9 (5) = y 10 (c)l, Fk[@ (5)~ “(c)l = c2*l) 

In the notation adopted we obtain on the plane 5 the following bound- 

ary value problem from the boundary conditions (1.3) for determination 

of three analytic functions q(c), ~(5) and o(c) 

-- 
cp (U +cp (5) = F, 10 (0, o (%)I for ICI=1 (2.2) 

i$pt (5) + 11, (5) = F, [a (5)> OJ (511 for 15 I= 1 

‘Ihe three functions T(G), y( 5) and ~(5) behave at infinity, because 
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of (1.2), as follows: 

647 

‘p (5) 

We consider 

certain finite 

Propos i t ion 

= 0 K”), 9 (5) = 0 (5”h ” (5) = 0 (5) (2.3) 

the second boundary condition (2.2). It represents a 

equation with respect to o(5). 

2.1. Let the second boundary condition (‘2.2) be solved 

with respect to o(g) 

w (0 = r I@ (01 0’ (t;)* T’ (Cl), 9 (C)I (2.4) 

and the function ~(5) 

x G) = r 10 (I;), 0’ CC)* cp’ 0 111, (511 (2.5) 

is analytic in the exterior of the unit circle igl > 1, except, possibly, 
at a finite number of isolated singular points of single-valued charac- 
ter. ‘Ihen the boundary value 

Indeed, let the functions 

problem (2.2) can be solved in closed form. 

N?J and x(S) as 5 * m be of the form 

II (6) - x0 (5) = 0 (6’) (v s 0) (2.6) 

Here x0(<) is a function analytic in the plane 5, except at singular 
points of the function x(c), at which it possesses singularities, which 
coincide with the singularities of the function x(g); the function x0(<) 
is known to an accuracy within, possibly, undetermined constants. If 
the function x(c) possesses an essential singular point at infinity, 
then the corresponding singularity is also included in the expression 

for x0(5) - The solution of the boundary value problem (2.4). obviously, 
is written in the form 

0 (I; ) = cot + B, (C-r) +x0 CC-9 t x (5) = COP + p, G-1 + X0 (t3 (2.7) 

Here PV is a polynomial of power v with.as yet undetermined coeffi- 
cients. Subsequently, the function (p(g) is found from the solution of 
the Dirichlet problem (2.2). All unknown constants are determined from 
finite equations, obtained by expanding the found functions (p(c). o(c) 
and ~(5) in the vicinity of singular points of the function ~(5) and at 
inf fnity, using equation (2.5). 

2. In the proposition advanced above, the analyticity condition of 
the function x(c) in the region exterior to the unit circle is an 
a posteriori one. Let us indicate a procedure which is convenient in 
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practical applications of the proposition mentioned. 

Let us consider the following equation 

(I 6 I > 1) 12.8) 

lhe function 6(5-‘) 

ICI < 1, 

is obviously analytic within the unit circle 

except at the origin of the coordinates, at which it possesses 

a pole of first order. 

Proposition 2.2. Let the function o(c) be analytic in the whole 

plane 5, except at the infinite point, at which it possesses a pole of 

first order and, possibly, a finite number of isolated sin lar points 

of single-valued character, placed within the unit circle 5) < 1. P 

‘Then the second boundary condition (2.2) ma be analytically con- 

tinued into the exterior of the unit circle 5 > 1 with the aid of the IT 
functional equation (2.8). 

Indeed, under the assumptions stated, the function o(c) may be 
written in the form (2.7). In particular, as is the case in the example 
considered below, the function x0(g) may be equal to zero identically. 
Then, obviously 

o(P) = k-1+& (C) + x0(C) (2.9) 

and the left part of the functional equation (2.8) is an analytic func- 
tion in the exterior of the unit circle, except at the infinite point 
and, possibly, at a finite number of singular points of single-valued 
character. Thus, also the right part of the functional equation (2.8). 
i. e. the function F2f,o(~), ~(~-')l, must be analytic in the exterior of 

the unit circle, except at the infinite point and, possibly, at a finite 

number of singular points of single-valued character, whose singular- 

ities coincide with the corresponding singularities of the left part. 

Thereby, the second boundary condition (2.2) will obviously be satis- 
fied. 

‘Ihus, the necessary feature that the function ~(5) has the form 

(2.7), is the analyticity of the right part of the functional equation 

(2.8) in the exterior of the unit circle I<] > 1, except a finite 
number of singular points of single-valued character. ‘Ihis feature will 

also be sufficient if the singularities of the left and the right part 

of the functional equation (2.8) can be chosen such that they coincide. 

lhis feature permits one sometimes to find quite easily the closed 

solutions of the boundary value problem (2.2) also in that case, when 
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it is not known whether the function F,[o(g), G(<-~II for 151 > 1 is 

analytic or not. To this end one should formal1 
(2.7) and (2.9) for the functions o(c) and is(g- Y 

substitute expressions 
) into the functional 

equation (2.8), require the analyticity of the function F,[o(<), 5(5-l)] 
almost everywhere in 151 > 1 and equate the singularities of the left 
and the right part of the functional equation (2.8). 

If it is possible to satisfy these conditions by a suitable selection 
of the undetermined coefficients and functions, then the existence of 
the solution (2.7) is proved. 

Note. The indicated argumentation is valid, obviously, with un- 

essential changes not only for the second boundary condition (2.2). but 

also for a boundary condition of a more general form 

f [o!t;), 01Kh a2 (51,. . .I = 0 for I’,1 = 1 

where ai are analytic functions, f is a differentiable function, in 

particular for the problem of elasto-plastic torsion, when the elastic 

kernel is completely surrounded by the plastic zone. 

3. Plate with a circular hole. 1. Let an infinite plate in a 

plane state of stress possess a circular hole of radius R with center 
at the origin of the coordinate system. A normal loading ur = p is 

applied to the contour of the hole, and the tangential loading equals 
zero -fro = 0 (F, 8 are polar coordinates). At infinity the homogeneous 
state of stress exists 

5x = 5xm, Qy=Qym, &=U (3.1) 

Let us assume that the plastic region surrounds completely the 
circular hole. We take the Tresca-St. Venant condition as the plasticity 
condition in the plastic region. Let us assume that in the plastic zone 
the inequa!.ity oe >ar > 0 is valid. ‘Ihe characteristics in the plastic 
zone will be radial straight lines and the stresses are equal [61 

Gl = %?, QP = 68 + (P - 5s) R / r1 z,FJ = 0 (3.2) 

(as is the plasticity constant) 

To satisfy the inequality a0 I CJ~ > > 0, the loading p, obviously, must 
satisfy the condition p <us. In the elastic region the fundamental 
relations of Kolosov-Muskhelishvili [41 are valid 

6, I- 50 = 4 Re @ (z), GO - q- + 2& = 2e2ie [SD' (z) + y lz)] (3.3) 
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Using (3.2) and (3.3), the boundary conditions on the unknown con- 

tour L, which separates the elastic from the plastic region, can be re- 

presented as: 

4 Re CD (z) = 2a,+ 
R (P- 6s) 

r , iip' (z) + Y (z) = 
R (a,--P) 

2r e-zie (3.4) 

On the basis of (3.4) the boundary value problem in the plane j for 

the determination of analytic functions q(IJ, y(c) and o(c) can be 

written down in the form 

On the basis of formula (3.1) the functions (p(3) and ~(5) behave at 
infinity as 

(3.6) 

cp(5) = +=+ o$=) + 0(5+), $((5) = f (o,~-Q%- 0(5"), o(5) = O(C) 

2. Let us consider the functional equation 

We seek the solution of the functional equation (3.7) in the form 

0 (5) = c,5 + P-,(5-‘) (3.5) 

Substituting (3.8) into (3.7), and expanding all functions into a 

series in the vicinity of the point at infinity, it is not difficult to 

note that v = 3, such that, if the function o(3) is of the form (3.8), 

then it necessarily is equal to 

cs o(5) =c&-t~+$+p (3.9) 

Here cO, . . . . c3 are as yet undetermined constants. From conditions 

of symnetry it follows that the constant cz is equal to zero and the re- 

maining constants are real. Let us show that they may be selected in 

such a way that the right part of the functional equation (3.7) is 

analytic in the exterior of the unit circle. The function o(g) has, 

obviously, four zeros, located within the unit circle ]<I < 1, and the 

function Tj(3-‘) h as four zeros located outside the unit circle. In order 
that the right part of the functional equation (3.7) be analytic in the 
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exterior of the unit circle, it is necessary and sufficient to require 

pairwise coincidence of zeros of the function Tj(<-'). Since the func- 

tion 5(5-l) is equal to 

0 (Cl.-‘) = S-l (co + $5” + C#C4) (3.10) 

then the pairwise coincidence of zeros it is sufficient to require the 

vanishing of the discriminant of the biquadratic equation 

Using condition 

down in the form 

Cl = = 4c& (3.21) 

(3.11), the functions o(c) and Gi(<-') may be written 

(3.12) 

From the functional equation (3.7) we find 

$(5) = 
R (6; - p) I/G (5’ + cl / 2Cs) c4 cp’ (6) !- c r-l 

2cd’x (52 + Cl / 2co)3 o’(Qw(b ) 
(3.13) 

3. Let us find the function q(c). The first boundary condition (3.5), 

using formulas (3.12), are conveniently written down in the form 

4 Recp (5) = 2~ + 
R (P - 6s) P 

I/= (ta + Cl / 2%) ( fa + ‘A / 2Co) = - 

=2a,+ 
~R(P- $) vcoc3 1 

Cl(CS - co) F-- ta + Cl/ 2s- 5" + :l/ao I 
for ICI=1 (3.14) 

The function F+*(c) is equal to 

F+ (c) = _ &(5-1) + 2R vG(p--s) cP+~~l,2ca 
Cl(C3 - cg) 

(3.15) 

and is analytic everywhere within the unit circle 151 < 1, while the 

function 

F- (6) = Q-J (5) - 2% + 
2R (P - bs) I’-c,c, 52 

s(cs- co) 5" + Cl/ 2co 
(3.16) 

is analytic everywhere outside the unit circle 151 > 1. 

The boundary condition (3.14) may be written down in the form 

F+ (5) = F- (5) for I 5 j = I (3.17) 

Consequently, the functions F+(g) and F-(c) are an analytic 
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continuation of each other across the unit circle. Ry Liouville's 

theorem they are identically equal to one and the same constant. From 

this, and also from the condition at infinity (3.6) for ~(0, one easily 

obtains 

where the three as yet undetermined coefficients are related by 

or=+ cr,m-- 20, + 
2R(P-4't/cocs o 

s(ca --co) 
= (3.19) 

From formula (3.18) we find 

cp’ (0 = - v-- $ ft”;$ + 0 (c-*) for %-+ 00 (3.20) 

Using conditions at infinity (3.6) and (3.20), by formula (3.13), we 

obtain one other relation between the coefficients cO* cl, c3 

(3.21) 

Thus, the functions (p(c), ty(CJ and ~(5) are determined by formulas 
(3,12), (3.13) and (3.18), while the constants cO, cl, c3 are found from 

the solution of a system of three finite equations (3.11), (3.19) and 

(3.21). It is easily verified that all the boundary conditions and the 

conditions at infinity are satisfied. 

The solution of the system (3.11), (3.19) and (3.21) may be repre- 

sented in the form 

4R 4aR GR 
co = __I_ Cl = CQ = 

a,* + dy=J - 20, 

a (aa - 4) * a (a” - 4) ’ a (a2 - 4) ’ a = OS--P 
(3.22) 

where a is a real root of the cubic equation 

62 + 4a + g = 0, 
8 (6,” - 6,“) 

@= CQ+am-za 
% zx e 

(3.23) 

Since the discriminant II = - e4 - 27 j3’ of the cubic equation (3.23) 

is always negative, equation (3.23) has one real and two conjugate com- 

plex roots [73. 

Finally, the original functions o(3), p(3) and ~(5) in accordance to 
formulas (3.12), (3.13), (3.18) and (3.22) take on the form 
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” (5) = R (2P + a)’ 
a($-4)c*' 

cp (5) = 5s - +(a,m + atp") -ag-~;ca 

II, (0 = a (P - 6) f 
4 (a6’ + a) 12 (aa + 4) P- = (4- 3aa)j 

2(2ca+ a)8(2ca + c1)(2~~-33a) 
(3.24) 

4. Let us investigate the solution obtained (3.24). The equation of 
the contour L, which separates the elastic and the plastic region, is 

represented in parametric form by 

5* (t) = 4 (1 + a) cos i! + US cos 3t, y* (t) = 4 (1 - a) sin t - aa sin 3t 

[Rz* (t) = a (aa - 4) x (t), Ry* (t) = a (aa - 4) y (t), (0 < t < 2n)] (3.25) 

Let US find the boundaries of existence of the solution. For the 

sake of determinateness we assume c m\ >a "30. Furthermore, the 

obvious inequality must be satisfies oVm< IT,. From here we obtain the . 0 

inequalities a < 0, p < 0, a > 0. In o$der that the plastic zone 

rounds completely the hole, it is necessary that the parameter a 

fies one more-inequality 

l+a u<2ra - 

Finally, we obtain the following inequalities which determine 

boundaries of existence of the solution (3.24) 

()>a>--1, zE>u>o (2 > = > 0) 

5. The derivative of expression (3.24) for w(c) will be 

op(c)= w252+d(25*-3d 
cz(a2-4)1;4 

For conformal mapping, produced by the analytic function o(j), it is 

sur- 

satis- 

(3.26) 

the 

(3.27) 

(3.28) 

necessary that everywhere outside of the unit circle its derivative be 

different from zero. In the opposite case on the contour L, which sepa- 

rates the elastic from the plastic region, a loop of nonsingle-valued- 

ness occurs, which does not possess a physical meaning. To satisfy this 
condition, the parameter a in accordance with (3.28) must satisfy the 

inequality 

0 < a < 2/3 (3.29) 

From here and from inequality (3.27) it follows that the parameter a 

should be within the range 
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--<~<--% 

'Ihe nonexistence of a physically real solution for values of the 
parameter a in the range l/2 < a < 0 leads one to conclude that the 
solution of the original elasto-plastic problem, which is continuous in 
stresses both in the plastic and in the elastic regions, for these 
values in the parameter a does not exist; one is forced to either intro- 
duce stress discontinuities in the plastic region, or adopt a more com- 
plete model of the elasto-plastic body. Apparently, in general, the 
solution of the elasto-plastic problem exists only until the return 
point appears on the separation contour L. An analogous circumstance 
occurs in the theory of filtration !%,91, in crack theory [lo], and in 
buckling of plates in membrane formulation [2]. 

We note that for a8 = 0 the solution obtained may be interpreted as 
a solution of the problem on buckling of a membrane with a circular 
hole, which is subjected to constant normal tensile stresses at the con- 
tour, while the shear stresses on the contour are vanishing. 

The author is thankful to L.A. Galin and 

attention to this work and its discussion. 
G.I. Barenblatt for their 
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